Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Commun Biol ; 7(1): 382, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553562

RESUMO

Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.


Assuntos
Autofagossomos , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Autofagossomos/metabolismo , Autofagia/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
2.
Mol Metab ; 81: 101892, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331318

RESUMO

BACKGROUND: Myoprotein degradation accelerates in obese individuals, resulting in a decline in muscular mass. Atg7 plays a crucial role in regulating protein stability and function through both autophagy-dependent and independent pathways. As obesity progresses, the expression of Atg7 gradually rises in muscle tissue. Nonetheless, the precise impact and mechanism of Atg7 in promoting muscle mass decline in obesity remain uncertain. The study aimed to elucidate the role and underly mechanism of Atg7 action in the context of obesity-induced muscle mass decline. METHODS: In this study, we established a murine model of high-fat diet-induced obesity (DIO) and introduced adeno-associated virus delivery of short hairpin RNA to knock down Atg7 (shAtg7) into the gastrocnemius muscle. We then examined the expressions of Atg7 and myoprotein degradation markers in the gastrocnemius tissues of obese patients and mice using immunofluorescence and western blotting techniques. To further investigate the effects of Atg7, we assessed skeletal muscle cell diameter and the myoprotein degradation pathway in C2C12 and HSkMC cells in the presence or absence of Atg7. Immunofluorescence staining for MyHC and western blotting were utilized for this purpose. To understand the transcriptional regulation of Atg7 in response to myoprotein degradation, we conducted luciferase reporter assays and chromatin immunoprecipitation experiments to examine whether FoxO3a enhances the transcription of Atg7. Moreover, we explored the role of Akt in Atg7-mediated regulation and its relevance to obesity-induced muscle mass decline. This was accomplished by Akt knockdown, treatment with MK2206, and GST pulldown assays to assess the interaction between Atg7 and Akt. RESULTS: After 20 weeks of being on a high-fat diet, obesity was induced, leading to a significant decrease in the gastrocnemius muscle area and a decline in muscle performance. This was accompanied by a notable increase in Atg7 protein expression (p < 0.01). Similarly, in gastrocnemius tissues of obese patients when compared to nonobese individuals, there was a significant increase in both Atg7 (p < 0.01) and TRIM63 (p < 0.01) levels. When palmitic acid was administered to C2C12 cells, it resulted in increased Atg7 (p < 0.01), LC3Ⅱ/Ⅰ (p < 0.01), and p62 levels (p < 0.01). Additionally, it promoted FoxO3a-mediated transcription of Atg7. The knockdown of Atg7 in the gastrocnemius partially reversed DIO-induced muscle mass decline. Furthermore, when Atg7 was knocked down in C2C12 and HSkMC cells, it mitigated palmitic acid-induced insulin resistance, increased the p-Akt/Akt ratio (p < 0.01), and reduced TRIM63 (p < 0.01). Muscular atrophy mediated by Atg7 was reversed by genetic knockdown of Akt and treatment with the p-Akt inhibitor MK2206. Palmitic acid administration increased the binding between Atg7 and Akt (p < 0.01) while weakening the binding of PDK1 (p < 0.01) and PDK2 (p < 0.01) to Akt. GST pulldown assays demonstrated that Atg7 directly interacted with the C-terminal domain of Akt. CONCLUSION: The consumption of a high-fat diet, along with lipid-induced effects, led to the inhibition of Akt signaling, which, in turn, promoted FoxO3a-mediated transcription, increasing Atg7 levels in muscle cells. The excess Atg7 inhibited the phosphorylation of Akt, leading to a cyclic activation of FoxO3a and exacerbating the decline in muscle mass regulated by obesity. Consequently, Atg7 serves as a regulatory point in determining the decline in muscle mass induced by obesity.


Assuntos
Ácido Palmítico , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Transdução de Sinais , Fibras Musculares Esqueléticas/metabolismo , Obesidade/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo
3.
Redox Biol ; 70: 103059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316066

RESUMO

Reactive oxygen species (ROS) play a pivotal role in macrophage-mediated acute inflammation. However, the precise molecular mechanism by which ROS regulate macrophage polarization remains unclear. Here, we show that ROS function as signaling molecules that regulate M1 macrophage polarization through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (Chk2), vital effector kinases in the DNA damage response (DDR) signaling pathway. We further demonstrate that Chk2 phosphorylates PKM2 at the T95 and T195 sites, promoting glycolysis and facilitating macrophage M1 polarization. In addition, Chk2 activation increases the Chk2-dependent expression of p21, inducing cell cycle arrest for subsequent macrophage M1 polarization. Finally, Chk2-deficient mice infected with lipopolysaccharides (LPS) display a significant decrease in lung inflammation and M1 macrophage counts. Taken together, these results suggest that inhibiting the ROS-Chk2 axis can prevent the excessive inflammatory activation of macrophages, and this pathway can be targeted to develop a novel therapy for inflammation-associated diseases and expand our understanding of the pathophysiological functions of DDR in innate immunity.


Assuntos
Ataxia Telangiectasia , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fosforilação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/genética , Ciclo Celular , Macrófagos/metabolismo , Inflamação
4.
Aging Cell ; 22(10): e13967, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37602729

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by amyloid-ß (Aß) deposition and neurofibrillary tangles. Although the NAD+ -dependent deacetylases SIRT1 and SIRT2 play pivotal roles in age-related diseases, their cooperative effects in AD have not yet been elucidated. Here, we report that the SIRT2:SIRT1 ratio is elevated in the brains of aging mice and in the AD mouse models. In HT22 mouse hippocampal neuronal cells, Aß challenge correlates with decreased SIRT1 expression, while SIRT2 expression is increased. Overexpression of SIRT1 prevents Aß-induced neurotoxicity. We find that SIRT1 impedes SIRT2-mediated APP deacetylation by inhibiting the binding of SIRT2 to APP. Deletion of SIRT1 reduces APP recycling back to the cell surface and promotes APP transiting toward the endosome, thus contributing to the amyloidogenic processing of APP. Our findings define a mechanism for neuroprotection by SIRT1 through suppression of SIRT2 deacetylation, and provide a promising avenue for therapeutic intervention of AD.


Assuntos
Doença de Alzheimer , Sirtuína 1 , Camundongos , Animais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Acetilação , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
5.
Ann Rheum Dis ; 82(10): 1328-1340, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487609

RESUMO

OBJECTIVES: The protective role of sodium glucose cotransporter 2 (SGLT2) inhibitors in renal outcomes has been revealed by large cardiovascular outcome trials among patients with type 2 diabetes. However, the effect of SGLT2 inhibitors on lupus nephritis (LN) and its underlying mechanisms remain unknown. METHODS: We applied empagliflozin treatment to lupus-prone MRL/lpr mice to explore the renal protective potential of SGLT2 inhibitors. An SGLT2 knockout monoclonal podocyte cell line was generated using the CRISPR/Cas9 system to examine the cellular and molecular mechanisms. RESULTS: In MRL/lpr mice treated with empagliflozin, the levels of mouse anti-dsDNA IgG-specific antibodies, serum creatinine and proteinuria were markedly decreased. For renal pathology assessment, both the glomerular and tubulointerstitial damages were lessened by administration of empagliflozin. The levels of SGLT2 expression were increased and colocalised with decreased synaptopodin in the renal biopsy samples from patients with LN and MRL/lpr mice with nephritis. The SGLT2 inhibitor empagliflozin could alleviated podocyte injury by attenuating inflammation and enhanced autophagy by reducing mTORC1 activity. Nine patients with LN treated with SGLT2 inhibitors with more than 2 months of follow-up showed that the use of SGLT2 inhibitors was associated with a significant decrease in proteinuria from 29.6% to 96.3%. Moreover, the estimated glomerular filtration rate (eGFR) was relatively stable during the treatment with SGLT2 inhibitors. CONCLUSION: This study confirmed the renoprotective effect of SGLT2 inhibitors in lupus mice, providing more evidence for non-immunosuppressive therapies to improve renal function in classic autoimmune kidney diseases such as LN.


Assuntos
Diabetes Mellitus Tipo 2 , Nefrite Lúpica , Podócitos , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Camundongos , Autofagia , Imunoglobulina G/metabolismo , Inflamação/patologia , Rim/patologia , Nefrite Lúpica/tratamento farmacológico , Camundongos Endogâmicos MRL lpr , Podócitos/patologia , Proteinúria , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Humanos
6.
Oncogene ; 42(22): 1843-1856, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081042

RESUMO

Oncogenic stress induces DNA damage repair (DDR) that permits escape from mitotic catastrophe and allows early precursor lesions during the evolution of cancer. SAMHD1, a dNTPase protecting cells from viral infections, has been recently found to participate in DNA damage repair process. However, its role in tumorigenesis remains largely unknown. Here, we show that SAMHD1 is up-regulated in early-stage human carcinoma tissues and cell lines under oxidative stress or genotoxic insults. We further demonstrate that de-ubiquitinating enzyme USP7 interacts with SAMHD1 and de-ubiquitinates it at lysine 421, thus stabilizing SAMHD1 protein expression for further interaction with CtIP for DDR, which promotes tumor cell survival under genotoxic stress. Furthermore, SAMHD1 levels positively correlates with USP7 in various human carcinomas, and is associated with an unfavorable survival outcome in patients who underwent chemotherapy. Moreover, USP7 inhibitor sensitizes tumor cells to chemotherapeutic agents by decreasing SAMHD1 in vitro and in vivo. These findings suggest that de-ubiquitination of SAMHD1 by USP7 promotes DDR to overcome oncogenic stress and affect chemotherapy sensitivity.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Ubiquitinação
7.
Eur J Med Chem ; 251: 115250, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931124

RESUMO

Lysine demethylase 5B (KDM5B) is a member of the Jumonji AT-rich interactive domain 1 family. Its main function is to demethylate di/trimethyl histone H3 lysine 4 and it plays a crucial role in the occurrence and development of cancer. In this study, we performed structure-based optimization of KDM5B inhibitors based on our previous work and the most active compound we synthesized was 11ad. Molecular modeling studies and thermal shift assays revealed that 11ad specifically targets KDM5B at the molecular and cellular levels. Crucially, 11ad demonstrated good pharmacokinetic properties and anti-prostate cancer activity in a xenograft model. Furthermore, unexpectedly, the specificity of 11ad for prostate cancer was found to be related to its inhibition of the phosphoinositide 3-kinase/AKT pathway. This is the first report of a KDM5B inhibitor affecting this pathway. Taken together, our findings indicate that 11ad is a novel KDM5B inhibitor that may serve as a lead compound for the development of treatments for prostate cancer.


Assuntos
Lisina , Neoplasias da Próstata , Masculino , Humanos , Lisina/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinase , Histona Desmetilases com o Domínio Jumonji , Neoplasias da Próstata/tratamento farmacológico , Piridinas/farmacologia , Pirazóis , Linhagem Celular Tumoral
8.
Cell Death Dis ; 13(8): 729, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999224

RESUMO

A major cause of proteinuria in lupus nephritis (LN) is podocyte injury, and determining potential therapeutic targets to prevent podocyte injury is important from a clinical perspective in the treatment of LN. CD36 is involved in podocyte injury in several glomerulopathies and was reported to be a vital candidate gene in LN. Here, we determined the role of CD36 in the podocyte injury of LN and the underlying mechanisms. We observed that CD36 and NLRP3 (NLR family pyrin domain containing 3) were upregulated in the podocytes of lupus nephritis patients and MRL/lpr mice with renal impairment. In vitro, CD36, NLRP3 inflammasome, and autophagy were elevated accompanied with increased podocyte injury stimulated by IgG extracted from lupus nephritis patients compared that from healthy donors. Knocking out CD36 with the CRISPR/cas9 system decreased the NLRP3 inflammasome levels, increased the autophagy levels and alleviated podocyte injury. By enhancing autophagy, NLRP3 inflammasome was decreased and podocyte injury was alleviated. These results demonstrated that, in lupus nephritis, CD36 promoted podocyte injury by activating NLRP3 inflammasome and inhibiting autophagy by enhancing which could decrease NLRP3 inflammasome and alleviate podocyte injury.


Assuntos
Nefrite Lúpica , Podócitos , Animais , Autofagia , Antígenos CD36/genética , Inflamassomos/metabolismo , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/genética , Camundongos , Camundongos Endogâmicos MRL lpr , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Podócitos/metabolismo
9.
Sci Adv ; 8(27): eabo0322, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857466

RESUMO

Progerin, a product of LMNA mutation, leads to multiple nuclear abnormalities in patients with Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging disorder. Progerin also accumulates during physiological aging. Here, we demonstrate that impaired insulin-like growth factor 1 receptor (IGF-1R)/Akt signaling pathway results in severe growth retardation and premature aging in Zmpste24-/- mice, a mouse model of progeria. Mechanistically, progerin mislocalizes outside of the nucleus, interacts with the IGF-1R, and down-regulates its expression, leading to inhibited mitochondrial respiration, retarded cell growth, and accelerated cellular senescence. Pharmacological treatment with the PTEN (phosphatase and tensin homolog deleted on chromosome 10) inhibitor bpV (HOpic) increases Akt activity and improves multiple abnormalities in Zmpste24-deficient mice. These findings provide previously unidentified insights into the role of progerin in regulating the IGF-1R/Akt signaling in HGPS and might be useful for treating LMNA-associated progeroid disorders.

10.
Cell Rep ; 40(2): 111062, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830807

RESUMO

Aging is a primary risk factor for neurodegenerative diseases, such as Alzheimer's disease (AD). SIRT2, an NAD+(nicotinamide adenine dinucleotide)-dependent deacetylase, accumulates in the aging brain. Here, we report that, in the amyloid precursor protein (APP)/PS1 transgenic mouse model of AD, genetic deletion of SIRT2 or pharmacological inhibition of SIRT2 ameliorates cognitive impairment. We find that suppression of SIRT2 enhances acetylation of APP, which promotes non-amyloidogenic processing of APP at the cell surface, leading to increased soluble APP-α (sAPPα). We discover that lysines 132 and 134 of the major pathogenic protein ß-amyloid (Aß) precursor are acetylated and that these residues are deacetylated by SIRT2. Strikingly, exogenous expression of wild-type or an acetylation-mimic APP mutant protects cultured primary neurons from Aß42 challenge. Our study identifies SIRT2-mediated deacetylation of APP on K132 and K134 as a regulated post-translational modification (PTM) and suggests inhibition of SIRT2 as a potential therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Acetilação , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Presenilina-1/metabolismo , Processamento de Proteína Pós-Traducional , Sirtuína 2/genética , Sirtuína 2/metabolismo
11.
Int J Biol Sci ; 18(3): 1107-1119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173542

RESUMO

The lamellar body (LB), a concentric structure loaded with surfactant proteins and phospholipids, is an organelle specific to type 2 alveolar epithelial cells (AT2). However, the origin of LBs has not been fully elucidated. We have previously reported that autophagy regulates Weibel-Palade bodies (WPBs) formation, and here we demonstrated that autophagy is involved in LB maturation, another lysosome-related organelle. We found that during development, LBs were transformed from autophagic vacuoles containing cytoplasmic contents such as glycogen. Fusion between LBs and autophagosomes was observed in wild-type neonate mice. Moreover, the markers of autophagic activity, microtubule-associated protein 1 light chain 3B (LC3B), largely co-localized on the limiting membrane of the LB. Both autophagy-related gene 7 (Atg7) global knockout and conditional Atg7 knockdown in AT2 cells in mice led to defects in LB maturation and surfactant protein B production. Additionally, changes in autophagic activity altered LB formation and surfactant protein B production. Taken together, these results suggest that autophagy plays a critical role in the regulation of LB formation during development and the maintenance of LB homeostasis during adulthood.


Assuntos
Células Epiteliais Alveolares , Surfactantes Pulmonares , Animais , Autofagia/genética , Corpos Lamelares , Lisossomos/metabolismo , Camundongos , Surfactantes Pulmonares/metabolismo , Tensoativos/metabolismo
12.
J Cell Mol Med ; 26(2): 491-506, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866322

RESUMO

In multiple types of cancer, decreased tumour cell apoptosis during chemotherapy is indicative of decreased chemosensitivity. Forkhead box K2 (FOXK2), which is essential for cell fate, regulates cancer cell apoptosis through several post-translational modifications. However, FOXK2 acetylation has not been extensively studied. Here, we evaluated the effects of sirtiun 1 (SIRT1) on FOXK2 deacetylation. Our findings demonstrated that SIRT1 inhibition increased FOXK2-induced chemosensitivity to cisplatin and that K223 in FOXK2 was acetylated. Furthermore, FOXK2 K223 deacetylation reduced chemosensitivity to cisplatin in vitro and in vivo. Mechanistically, FOXK2 was acetylated by the acetyltransferase cAMP response element binding protein and deacetylated by SIRT1. Furthermore, cisplatin attenuated the interaction between FOXK2 and SIRT1. Cisplatin or SIRT1 inhibition enhanced FOXK2 acetylation, thereby reducing the nuclear distribution of FOXK2. Additionally, FOXK2 K223 acetylation significantly affected the expression of cell cycle-related and apoptosis-related genes in cisplatin-stimulated cancer cells, and FOXK2 K223 hyperacetylation promoted mitotic catastrophe, which enhanced chemosensitivity to cisplatin. Overall, our results provided insights into the mechanisms of SIRT1-mediated FOXK2 deacetylation, which was involved in chemosensitivity to cisplatin.


Assuntos
Cisplatino , Sirtuína 1 , Acetilação , Apoptose , Cisplatino/farmacologia , Processamento de Proteína Pós-Traducional , Sirtuína 1/genética , Sirtuína 1/metabolismo
13.
Signal Transduct Target Ther ; 6(1): 389, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34759261

RESUMO

SARS-CoV-2 and SARS-CoV are genetically related coronavirus and share the same cellular receptor ACE2. By replacing the VSV glycoprotein with the spikes (S) of SARS-CoV-2 and SARS-CoV, we generated two replication-competent recombinant viruses, rVSV-SARS-CoV-2 and rVSV-SARS-CoV. Using wild-type and human ACE2 (hACE2) knock-in mouse models, we found a single dose of rVSV-SARS-CoV could elicit strong humoral immune response via both intranasal (i.n.) and intramuscular (i.m.) routes. Despite the high genetic similarity between SARS-CoV-2 and SARS-CoV, no obvious cross-neutralizing activity was observed in the immunized mice sera. In macaques, neutralizing antibody (NAb) titers induced by one i.n. dose of rVSV-SARS-CoV-2 were eight-fold higher than those by a single i.m. dose. Thus, our data indicates that rVSV-SARS-CoV-2 might be suitable for i.n. administration instead of the traditional i.m. immunization in human. Because rVSV-SARS-CoV elicited significantly stronger NAb responses than rVSV-SARS-CoV-2 in a route-independent manner, we generated a chimeric antigen by replacing the receptor binding domain (RBD) of SARS-CoV S with that from the SARS-CoV-2. rVSV expressing the chimera (rVSV-SARS-CoV/2-RBD) induced significantly increased NAbs against SARS-CoV-2 in mice and macaques than rVSV-SARS-CoV-2, with a safe Th1-biased response. Serum immunized with rVSV-SARS-CoV/2-RBD showed no cross-reactivity with SARS-CoV. hACE2 mice receiving a single i.m. dose of either rVSV-SARS-CoV-2 or rVSV-SARS-CoV/2-RBD were fully protected against SARS-CoV-2 challenge without obvious lesions in the lungs. Our results suggest that transplantation of SARS-CoV-2 RBD into the S protein of SARS-CoV might be a promising antigen design for COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Proteínas Recombinantes de Fusão/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
14.
Int J Biol Sci ; 17(14): 4047-4059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671219

RESUMO

The faithful DNA replication is a critical event for cell survival and inheritance. However, exogenous or endogenous sources of damage challenge the accurate synthesis of DNA, which causes DNA lesions. The DNA lesions are obstacles for replication fork progression. However, the prolonged replication fork stalling leads to replication fork collapse, which may cause DNA double-strand breaks (DSB). In order to maintain genomic stability, eukaryotic cells evolve translesion synthesis (TLS) and template switching (TS) to resolve the replication stalling. Proliferating cell nuclear antigen (PCNA) trimer acts as a slide clamp and encircles DNA to orchestrate DNA synthesis and DNA damage tolerance (DDT). The post-translational modifications (PTMs) of PCNA regulate these functions to ensure the appropriate initiation and termination of replication and DDT. The aberrant regulation of PCNA PTMs will result in DSB, which causes mutagenesis and poor response to chemotherapy. Here, we review the roles of the PCNA PTMs in DNA duplication and DDT. We propose that clarifying the regulation of PCNA PTMs may provide insights into understanding the development of cancers.


Assuntos
Carcinogênese , Dano ao DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Processamento de Proteína Pós-Traducional , Humanos
15.
Appl Microbiol Biotechnol ; 105(14-15): 6007-6018, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34390354

RESUMO

Liver fibrosis is caused by the accumulation of extracellular matrix proteins on the surface of hepatocytes and results from chronic liver injury. TGFß1 is one of the most important promoters of hepatic fibrosis, which accelerates the transformation of hepatic stellate cells to myofibroblasts and collagen expression. It is well-known that TGFß1 binds to TGFßR2 to mediate its downstream signal cascades to regulate target gene transcription. Therefore, the TGFßR2 blocker might be a prominent drug candidate. We constructed TGFßR2 extracellular domain into living biotherapeutics Lactococcus lactis to reduce hepatic fibrosis in CCl4 treated mice in the present study. We found that the culture supernatant of the recombinant bacteria can inhibit the TGFß1-induced collagen synthesis in the hepatic stellate cells at the cellular level. In addition, results of in vivo study showed that the recombinant bacteria significantly reduced the degree of liver fibrosis in CCl4-treated mice. Furthermore, flow cytometry results indicated that the recombinant bacteria treatment significantly reduced the CD11b+ Kupffer cells compared with the empty vector bacteria group. Consistently, fibrosis-related gene and protein expression were significantly reduced upon recombinant bacteria treatment. Finally, the subchronic toxicity test results showed that this bacteria strain did not have any significant side effects. In conclusion, our recombinant Lactococcus lactis shows tremendous therapeutic potential in liver fibrosis. KEY POINTS: • The supernatant of L. lactis expressing TGFßR2 inhibits the activation of myofibroblast. • The oral recombinant strain reduced the degree of liver fibrosis and inflammation in mice. • The recombinant strain was safe in subchronic toxicity test in mice.


Assuntos
Lactococcus lactis , Animais , Colágeno , Hepatócitos , Lactococcus lactis/genética , Cirrose Hepática/prevenção & controle , Camundongos
16.
Toxicol Res (Camb) ; 10(2): 183-191, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33884169

RESUMO

Qing Hao Gan Cao (QHGC), a Chinese medicinal formula containing Artemisia annua and Glycyrrhizae Radix et Rhizoma, has been used to treat sunstroke and as an antiviral agent for more than 800 years. It has not previously been subject to a toxicological safety evaluation in acute and subacute (28 days) studies. Therefore, the acute and subacute toxicity of an aqueous extract of QHGC were evaluated in vivo. For the QHGC preparation, the botanical raw materials were crushed into pieces and mixed in the ratio of 10:1 in distilled water for 12 h, then boiling three times for 2 h each time. The three decoctions were mixed and filtered, then spray-dried with hot air at 160°C for 30 min, and stored at room temperature. For the acute toxicity test, 72.0 g/kg of QHGC extract was administered by gavage to male and female mice. Body weight, general observations, and autopsy results were recorded. No mortality or toxicity signs were observed during the studies. For the subacute toxicity test, 4.0, 8.0, or 16.0 g/kg/day of QHGC extract was administered to rats for 28 days. General observations and mortality, body weight, biochemical and hematological parameters, organ weight, and pathological morphology were analyzed. The acute and subacute toxicity studies did not show significant changes in body weight, general observations, hematology and biochemical parameters, organ weight, and liver, spleen, stomach, duodenum, testis, ovary, lung, heart, and kidney histopathological analyses. The consumption of QHGC aqueous extract can be considered safe within the conditions of this study.

17.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627431

RESUMO

Improper distribution of chromosomes during mitosis can contribute to malignant transformation. Higher eukaryotes have evolved a mitotic catastrophe mechanism for eliminating mitosis-incompetent cells; however, the signaling cascade and its epigenetic regulation are poorly understood. Our analyses of human cancerous tissue revealed that the NAD-dependent deacetylase SIRT2 is up-regulated in early-stage carcinomas of various organs. Mass spectrometry analysis revealed that SIRT2 interacts with and deacetylates the structural maintenance of chromosomes protein 1 (SMC1A), which then promotes SMC1A phosphorylation to properly drive mitosis. We have further demonstrated that inhibition of SIRT2 activity or continuously increasing SMC1A-K579 acetylation causes abnormal chromosome segregation, which, in turn, induces mitotic catastrophe in cancer cells and enhances their vulnerability to chemotherapeutic agents. These findings suggest that regulation of the SIRT2-SMC1A axis through deacetylation-phosphorylation permits escape from mitotic catastrophe, thus allowing early precursor lesions to overcome oncogenic stress.


Assuntos
Antimitóticos , Sirtuína 2 , Acetilação , Carcinogênese/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Humanos , Fosforilação , Sirtuína 2/genética , Sirtuína 2/metabolismo
18.
Int J Biol Sci ; 17(1): 89-96, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390835

RESUMO

The sirtuins family is well known by its unique nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase function. The most-investigated member of the family, Sirtuin 1 (SIRT1), accounts for deacetylating a broad range of transcription factors and coregulators, such as p53, the Forkhead box O (FOXO), and so on. It serves as a pivotal regulator in various intracellular biological processes, including energy metabolism, DNA damage response, genome stability maintenance and tumorigenesis. Although the most attention has been focused on its intracellular functions, the regulatory effect on extracellular microenvironment remodeling of SIRT1 has been recognized by researchers recently. SIRT1 can regulate cell secretion process and participate in glucose metabolism, neuroendocrine function, inflammation and tumorigenesis. Here, we review the advances in the understanding of SIRT1 on remodeling the extracellular microenvironment, which may provide new ideas for pathogenesis investigation and guidance for clinical treatment.


Assuntos
Microambiente Celular , Sirtuína 1/metabolismo , Animais , Humanos , Inflamação/metabolismo , Secreção de Insulina , Metabolismo dos Lipídeos , Sistemas Neurossecretores/metabolismo
19.
Int J Biol Sci ; 16(15): 3075-3084, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061819

RESUMO

Sirtuin 2 (SIRT2), an NAD+-dependent deacetylase, regulates multiple biologic and pathologic processes including mitosis, genomic integrity, cell homeostasis and tumorigenesis. However, the role of SIRT2 in the immune response to cancer remains largely elusive. In this study, we found significantly lower expression of SIRT2 in peripheral T lymphocytes from breast cancer patients when compared to normal individuals. Moreover, SIRT2 levels positively correlated with CD8+ effector memory T (TEM) cells in breast cancer patients. In keeping with these findings, altered T cells differentiation manifested as decreased TEM cells and increased naive T cells were observed in Sirt2 deficient mice. The upregulation of CD8+ TEM by SIRT2 might attribute to the activation of aerobic oxidation as well as the inhibition of GSK3ß acetylation in CD8+ T cells. Taken together, these results suggest that SIRT2 participate in tumor immune response by regulating T cell differentiation, which may provide novel insight for tumor prevention and immune therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Sirtuína 2 , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Humanos , Ativação Linfocitária , Camundongos , NAD , Neoplasias/genética , Neoplasias/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo
20.
Int J Biol Sci ; 16(12): 2051-2062, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549753

RESUMO

DNA damage signals transducer RING finger protein 8 (RNF8) is involved in maintaining genomic stability by facilitating the repair of DNA double-strand breaks (DSB) via ubiquitin signaling. By analyzing the TCGA database and colon cancer tissue microarrays, we found that the expression level of RNF8 was positively correlated with that of c-Myc in colon cancer, which were closely associated with poor survival of colon cancer patients. Furthermore, overexpressing and knocking down RNF8 increased and decreased the expression of c-Myc in colon cancer cells, respectively. In addition, RNF8 interacted with ß-catenin and facilitated its nuclear translocation by conjugating K63 polyubiquitination on it. These observations suggested a de novo role of RNF8 in promoting the progression of colon cancer by inducing ß-catenin-mediated c-Myc expression.


Assuntos
Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais , Proteínas Proto-Oncogênicas c-myc/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...